Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 181: 114094, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448096

RESUMEN

The detailed dynamics of small molecular nonvolatile chemical and bacterial diversities, as well as their relationship are still unclear in the manufacturing process of Keemun black tea (KMBT). Herein, mass spectrometry-based untargeted metabolomics, Feature-based Molecular Networking (FBMN) and bacterial DNA amplicon sequencing were used to investigate the dense temporal samples of the manufacturing process. For the first time, we reveal that the pyrogallol-type catechins are oxidized asynchronously before catechol-type catechins during the black tea processing. Rolling is the key procedure for forming the small molecular nonvolatile metabolite profile (SMNMetProf), increasing the metabolite richness, and then shaping the bacterial community structure in the KMBT manufacturing process, which decreases both molecular weight and molecular polarity of the small molecular nonvolatile metabolites. The SMNMetProf of black tea is formed by the endogenous enzymatic oxidation of tea leaves, rather than bacterial fermentation.


Asunto(s)
Camellia sinensis , Catequina , , Comercio , ADN Bacteriano/genética
2.
Am J Cancer Res ; 13(4): 1407-1424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168333

RESUMEN

(-)-Epigallocatechin-3-gallate (EGCG) is the primary active ingredient in green tea and has been used for cancer prevention in clinical trials. The anti-tumor effects of EGCG stem from its ability to inhibit the activities of many oncoproteins, such as AKT, VEGFR, STAT3, and mutant p53. However, the clinical efficacy of EGCG is unsatisfactory. How to improve the anti-tumor effects of EGCG is an open question. Here we report that EGCG inhibits the tumor suppressive Hippo signaling pathway and activates downstream YAP in colorectal cancer (CRC) cells. Activation of YAP impedes the anti-tumor effects of EGCG. YAP blockade increases the sensitivity of CRC cells to EGCG treatment.

3.
J Agric Food Chem ; 70(18): 5701-5714, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35502792

RESUMEN

Understanding the microbial and chemical diversities, as well as what affects these diversities, is important for modern manufacturing of traditional fermented foods. In this work, Chinese dark teas (CDTs) that are traditional microbial fermented beverages with relatively high sample diversity were collected. Microbial DNA amplicon sequencing and mass spectrometry-based untargeted metabolomics show that the CDT microbial ß diversity, as well as the nonvolatile chemical α and ß diversities, is determined by the primary impact factors of geography and manufacturing procedures, in particular, latitude and pile fermentation after blending. A large number of metabolites sharing between CDTs and fungi were discovered by Feature-based Molecular Networking (FBMN) on the Global Natural Products Social Molecular Networking (GNPS) web platform. These molecules, such as prenylated cyclic dipeptides and B-vitamins, are functionally important for nutrition, biofunctions, and flavor. Molecular networking has revealed patterns in metabolite profiles on a chemical family level in addition to individual structures.


Asunto(s)
Camellia sinensis , Alimentos Fermentados , China , Fermentación , Metabolómica/métodos
4.
J Agric Food Chem ; 68(30): 7995-8007, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32618197

RESUMEN

Dark teas are prepared by a microbial fermentation process. Flavan-3-ol B-ring fission analogues (FBRFAs) are some of the key bioactive constituents that characterize dark teas. The precursors and the synthetic mechanism involved in the formation of FBRFAs are not known. Using a unique solid-state fermentation system with ß-cyclodextrin inclusion complexation as well as targeted chromatographic isolation, spectroscopic identification, and Feature-based Molecular Networking on the Global Natural Products Social Molecular Networking web platform, we reveal that dihydromyricetin and the FBRFAs, including teadenol A and fuzhuanin A, are derived from epigallocatechin gallate upon exposure to fungal strains isolated from Fuzhuan brick tea. In particular, the strains from subphylum Pezizomycotina were key drivers for these B-/C-ring oxidation transformations. These are the same transformations seen during the fermentation process of dark teas. These discoveries set the stage to enrich dark teas and other food products for these health-promoting constituents.


Asunto(s)
Camellia sinensis/metabolismo , Catequina/análogos & derivados , Bacterias/metabolismo , Camellia sinensis/química , Camellia sinensis/microbiología , Catequina/química , Catequina/metabolismo , Fermentación , Flavonoides/química , Flavonoides/metabolismo , Flavonoles/química , Flavonoles/metabolismo , Manipulación de Alimentos , Microbiología de Alimentos , Té/química
5.
Zool Res ; 41(4): 365-372, 2020 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32400978

RESUMEN

Exosomes are small vesicles secreted by all cell types in the brain and play a role in cell-cell communication through the transfer of cargo or encapsulation. Exosomes in the brain have considerable impact on neuronal development, activation, and regeneration. In addition, exosomes are reported to be involved in the onset and propagation of various neurodegenerative diseases. In this review, we discuss the content of exosomes derived from major cell types in the brain, and their function under physiological and pathological conditions.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiología , Exosomas/patología , Exosomas/fisiología , Animales , Comunicación Celular , Humanos
6.
Colloids Surf B Biointerfaces ; 175: 454-462, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30572153

RESUMEN

Poly(butyl-2-cyanoacrylate) (PBCA) nanoparticles have been widely elaborated for nearly half a century. However, PBCA nanowires (PNWs) were seldom investigated. Here, new polymeric biomaterial PNWs were prepared via emulsion polymerization based on the sodium dodecyl sulfate (SDS)-assisted emulsion process. Results indicated that SDS micelles and PBCA polymer can develop surfactant-polymer complexes by self-assembly at room temperature. SDS concentration was confirmed to be the critical parameter for the association of the surfactant and the polymer. With the addition of SDS (0-40 mM), the interaction between SDS and PBCA led to a series of transitions from nanoparticles to nanowires. These morphology transitions were triggered by changing the electrostatic repulsion in the SDS-PBCA system, confirmed by the variety of zeta potential with increasing molar contents of SDS. To overcome the electrostatic repulsion, the complexes underwent transitions from spherical, worm-like (short-cylindrical), to elongated-cylindrical form. Finally, associated with the results from scanning / transmission electron microscopy (SEM / TEM), the elongated-cylindrical PNWs acquired at 20 mM of SDS were chosen to execute cell viability assay, which showed that they had no toxicity but with good-biocompatibility at the doses ≤ 50 µg/ml. These results indicate that the PNWs prepared by this facile-green and low-toxic strategy can potentially work as promising biomaterials in the biomedicine field.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Cianoacrilatos/química , Endotelio Vascular/citología , Células Madre Mesenquimatosas/citología , Nanocables/administración & dosificación , Polímeros/administración & dosificación , Materiales Biocompatibles/química , Supervivencia Celular , Células Cultivadas , Humanos , Nanocables/química , Polímeros/química
7.
Food Funct ; 9(8): 4173-4183, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29989631

RESUMEN

Green tea may favorably modulate blood glucose homeostasis, and regular consumption of green tea can prevent the development of type 2 diabetes mellitus. In this study, α-glucosidase and α-amylase inhibitory effects of the novel acylated flavonol tetraglycoside (camellikaempferoside C, 1) and 14 other flavone and flavone glycosides (FGs) isolated from Lu'an GuaPian (Camellia sinensis L.O. Kuntze) were evaluated. The kaempferol monoglycoside (15) showed inhibitory activity against α-glucosidase with IC50 at 40.02 ± 4.61 µM, and kaempferol diglycoside (13) showed α-amylase inhibition with IC50 at 0.09 ± 0.02 µM. Further, inhibitory mechanisms of FGs 15 and 13 were studied by molecular docking analysis and fluorescence spectrometry. Molecular docking suggested that FG 15 interacted with α-glucosidase mainly by hydrogen bonding, which was the same interaction force between FG 13 and α-amylase. Intrinsic fluorescence of α-glucosidase and α-amylase was quenched by 15 and 13, respectively, through a static quenching mechanism. The spontaneous formation of 15-α-glucosidase and 13-α-amylase complexes was driven by van der Waals forces and hydrogen bonding. The present study provides new insight into the potential application of Lu'an GuaPian green tea as a functional food ingredient to regulate postprandial hyperglycemia through inhibition of α-glucosidase/α-amylase by FGs, particularly the mono- and di- glycosides of kaempferol.


Asunto(s)
alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo , Camellia sinensis/química , Inhibidores de Glicósido Hidrolasas , Glicósidos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Té/química , alfa-Amilasas/química , alfa-Amilasas/metabolismo , alfa-Glucosidasas/química
8.
Food Chem ; 237: 1172-1178, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28763966

RESUMEN

Zijuan tea is a special cultivar of Yunnan broad-leaf tea (Camellia sinensis var. assamica) with purple buds, leaves, and stems. Phytochemical study on this tea led to the discovery of three hydroxycinnamoylated catechins (HCCs) (1-3), seven other catechins (4-10), three proanthocyanidins (11-13), five flavones and flavone glycosides (14-18), two alkaloids (19, 20), one steroid (21), and one phenylpropanoid glycoside (22). The isolation and structural elucidation of the caffeoylated catechin (1) by means of spectroscopic techniques were described. We also provide the first evidence that 1 is synthesized via a two-step pathway in tea plant. The three HCCs (1-3) were investigated on their bioactivity through molecular modeling simulation and biochemical experiments. Our results show that they bind acetylcholinesterase (AChE) tightly and have strong AChE inhibitory activity with IC50 value at 2.49, 11.41, 62.26µM, respectively.


Asunto(s)
Inhibidores de la Colinesterasa/aislamiento & purificación , Té/química , Vías Biosintéticas , Camellia sinensis , Catequina , China
9.
Theor Appl Genet ; 107(2): 332-9, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12845446

RESUMEN

Genetic diversity and population genetic structure of natural Oryza rufipogon populations in China were studied based on ten microsatellite loci. For a total of 237 individuals of 12 populations collected from four regions, a moderate to high level of genetic diversity was observed at population levels with the number of alleles per locus ( A) ranging from 2 to 18 (average 10.6), and polymorphic loci ( P) from 40.0% to 100% (average 83.3%). The observed heterozygosity ( H(O)) varied from 0.163 to 0.550 with the mean of 0.332, and the expected heterozygosity ( H(E)) from 0.164 to 0.648 with the mean of 0.413. The level of genetic diversity for Guangxi was the highest. These results are in good agreement with previous allozyme and RAPD studies. However, it was unexpected that high genetic differentiation among populations was found ( R(ST) = 0.5199, theta = 0.491), suggesting that about one-half of the genetic variation existed between the populations. Differentiation (pairwise theta) was positively correlated with geographical distance ( r = 0.464), as expected under the isolation by distance model. The habitat destruction and degradation throughout the geographic range of O. rufipogon may be the main factor attributed to high genetic differentiation among populations of O. rufipogon in China.


Asunto(s)
Evolución Molecular , Variación Genética , Genética de Población , Oryza/genética , China , Análisis por Conglomerados , Electroforesis en Gel de Poliacrilamida , Frecuencia de los Genes , Geografía , Repeticiones de Microsatélite/genética , Tinción con Nitrato de Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...